

Lecture 15: Exact Homology Sequence

Exact Homology Sequence

Definition

Chain maps $0 \to C_{\bullet}' \xrightarrow{i} C_{\bullet} \xrightarrow{p} C_{\bullet}'' \to 0$ is called a short exact sequence if for each n

$$0 \to C_n' \stackrel{i}{\to} C_n \stackrel{p}{\to} C_n' \to 0$$

is an exact sequence of abelian groups.

We have the following commuting diagram

Lemma

Let $0 \to C_{\bullet}' \xrightarrow{i} C_{\bullet} \xrightarrow{p} C_{\bullet}'' \to 0$ be a short exact sequence. There is a natural homomorphism

$$\delta: H_n(C''_{\bullet}) \to H_{n-1}(C'_{\bullet})$$

called the connecting map. It induces a long exact sequence

$$\cdots \to H_n(C'_{\bullet}) \xrightarrow{i_*} H_n(C_{\bullet}) \xrightarrow{p_*} H_n(C''_{\bullet}) \xrightarrow{\delta} H_{n-1}(C'_{\bullet}) \xrightarrow{i_*} H_{n-1}(C_{\bullet}) \xrightarrow{p_*} \cdots$$

The connecting map δ is natural in the sense that a commutative diagram of complexes with exact rows

$$0 \longrightarrow C'_{\bullet} \longrightarrow C_{\bullet} \longrightarrow C''_{\bullet} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow D'_{\bullet} \longrightarrow D_{\bullet} \longrightarrow D''_{\bullet} \longrightarrow 0$$

induces a commutative diagram of abelian groups with exact rows

$$\cdots \longrightarrow H_n(C''_{\bullet}) \longrightarrow H_n(C_{\bullet}) \longrightarrow H_n(C''_{\bullet}) \xrightarrow{\delta} H_{n-1}(C'_{\bullet}) \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\cdots \longrightarrow H_n(D''_{\bullet}) \longrightarrow H_n(D_{\bullet}) \longrightarrow H_n(D''_{\bullet}) \xrightarrow{\delta} H_{n-1}(D'_{\bullet}) \longrightarrow \cdots$$

We first describe the construction of $\delta.$ Given a class

 $[lpha]\in H_n(\mathcal{C}'_ullet)$, let $lpha\in\mathcal{C}'_n$ be a representative. We can find $eta\in\mathcal{C}_n$

$$p(\beta) = \alpha.$$

Since
$$p(\partial\beta)=\partial(p(\beta))=\partial\alpha=0$$
, we find $\gamma\in C_{n-1}'$ such that
$$i(\gamma)=\partial\beta.$$

Since

$$i(\partial(\gamma)) = \partial(i(\gamma)) = \partial^2(\beta) = 0 \Longrightarrow \partial(\gamma) = 0.$$

This is illustrated by chasing the following diagram

 γ defines a class $[\gamma] \in H_{n-1}(C_{\bullet})$. We show this class does not depend on various choices.

▶ Choice of β . Suppose we choose another $\tilde{\beta}$ such that $p(\tilde{\beta}) = \alpha$. Then there exists $x \in C_n$ such that

$$\tilde{\beta} = \beta + i(x).$$

It follows that $\tilde{\gamma} = \gamma + \partial x$, so $[\tilde{\gamma}] = [\gamma]$.

Choice of α . Suppose we choose another representative $\tilde{\alpha} = \alpha + \partial x$ of the class $[\alpha]$. We can choose a lifting

$$\tilde{\beta} = \beta + \partial y$$

of $\tilde{\alpha}$ where p(y) = x. Since $\partial \tilde{\beta} = \partial \beta$, we have $\tilde{\gamma} = \gamma$.

Therefore we have a well-defined map

$$\delta: H_n(C''_{\bullet}) \to H_{n-1}(C'_{\bullet})$$

by

$$\delta[\alpha] = [\gamma].$$

We next show the exactness of the sequence

$$\cdots \to H_n(C'_{\bullet}) \xrightarrow{i_*} H_n(C_{\bullet}) \xrightarrow{p_*} H_n(C''_{\bullet}) \xrightarrow{\delta} H_{n-1}(C'_{\bullet}) \xrightarrow{i_*} H_{n-1}(C_{\bullet}) \xrightarrow{p_*} \cdots$$

$$\cdots \to H_n(C'_{\bullet}) \xrightarrow{i_*} H_n(C_{\bullet}) \xrightarrow{p_*} H_n(C''_{\bullet}) \xrightarrow{\delta} H_{n-1}(C'_{\bullet}) \xrightarrow{i_*} H_{n-1}(C_{\bullet}) \xrightarrow{p_*} \cdots$$

Exactness at $H_n(C_{\bullet})$

 $\operatorname{im}(i_*) \subset \ker(p_*)$ is obvious.

If $[\alpha] \in H_n(C_{\bullet})$ such that $[p(\alpha)] = 0$, so $p(\alpha) = \partial x$. Let $y \in C_{n+1}$ be a lifting of x so p(y) = x. Since $p(\alpha - \partial y) = 0$,

$$\alpha - \partial y = i(\beta)$$

for some $\beta \in C_n$. Then $\partial \beta = 0$ and

$$i_*([\beta]) = [\alpha]$$

which implies $\ker(p_*) \subset \operatorname{im}(i_*)$.

$$\cdots \to H_n(C_{\bullet}') \stackrel{i_*}{\to} H_n(C_{\bullet}) \stackrel{p_*}{\to} H_n(C_{\bullet}'') \stackrel{\delta}{\to} H_{n-1}(C_{\bullet}') \stackrel{i_*}{\to} H_{n-1}(C_{\bullet}) \stackrel{p_*}{\to} \cdots$$

Exactness at $H_{n-1}(C'_{\bullet})$

Assume $[\alpha] = p_*[\beta]$, then β is a lift of α and $\partial \beta = 0$. So $\delta[\alpha] = 0$.

$$\operatorname{im}(\boldsymbol{p}_*) \subset \ker(\delta).$$

On the other hand, if $\delta[\alpha]=0$. We can find a lift β of α such that $\partial\beta=0$. Then $[\alpha]=p_*[\beta]$. Hence

$$\ker(\delta) \subset \operatorname{im}(p_*).$$

$$\cdots \to H_n(C_{\bullet}) \xrightarrow{i_*} H_n(C_{\bullet}) \xrightarrow{p_*} H_n(C_{\bullet}') \xrightarrow{\delta} H_{n-1}(C_{\bullet}') \xrightarrow{i_*} H_{n-1}(C_{\bullet}) \xrightarrow{p_*} \cdots$$

Exactness at $H_{n-1}(C'_{\bullet})$

$$i_*\delta([\alpha]) = i_*[\gamma] = [\partial\beta] = 0$$
. This shows

$$\operatorname{im} \delta \subset \ker i_*$$
.

Assume $[\gamma] \in \mathcal{H}_{n-1}(\mathcal{C}_{\bullet})$ such that $i_*[\gamma] = 0$. Then $i(\gamma) = \partial \beta$ for some β . Let $\alpha = p(\beta)$. Then

$$\partial(\alpha) = \partial p(\beta) = p(\partial \beta) = pi(\gamma) = 0.$$

So $[\alpha]$ defines a homology class and $\delta[\alpha] = [\gamma]$ by construction.

$$\ker i_* \subset \operatorname{im} \delta$$
.

Relative Homology

Definition

Let $A \subset X$ be a subspace. It indues a natural injective chain map $S_{\bullet}(A) \hookrightarrow S_{\bullet}(X)$. We define the singular chain complex of X relative to A to be

$$S_n(X,A) := S_n(X)/S_n(A)$$

with the induced differential. Its homology

$$\mathrm{H}_n(X,A) := \mathrm{H}_n(S_{\bullet}(X,A))$$

is called the *n*-th relative homology.

Theorem

For $A \subset X$, there is a long exact sequence of abelian groups

$$\cdots \to \operatorname{H}_n(A) \to \operatorname{H}_n(X) \to \operatorname{H}_n(X,A) \xrightarrow{\delta} \operatorname{H}_{n-1}(A) \to \cdots$$

Proof.

This follows from the short exact sequence of complexes

$$0 \to S_{\bullet}(A) \to S_{\bullet}(X) \to S_{\bullet}(X,A) \to 0.$$

Define relative *n*-cycles $Z_n(X,A)$ and relative *n*-boundaries $B_n(X,A)$

$$Z_n(X,A) = \{ \gamma \in S_n(X) : \partial \gamma \in S_{n-1}(A) \}$$

$$B_n(X,A) = B_n(X) + S_n(A) \subset S_n(X).$$

Then it is easy to check that

$$S_n(A)\subset B_n(X,A)\subset Z_n(X,A)\subset S_n(X)$$

and

$$H_n(X,A) = Z_n(X,A)/B_n(X,A).$$

Two relative *n*-cycles γ_1, γ_2 defines the same class $[\gamma_1] = [\gamma_2]$ in $H_n(X, A)$ if and only if $\gamma_1 - \gamma_2$ is homologous to a chain in A.

图: Relative *n*-cycles

The connecting map

$$\delta: \mathrm{H}_n(X,A) \to \mathrm{H}_{n-1}(A)$$

can be understood as follows: an n-cycle in $\mathrm{H}_n(X,A)$ is represented by an n-chain $\gamma \in S_n(X)$ such that its boundary $\partial(\gamma)$ lies in A. Viewing $\partial(\gamma)$ as a (n-1)-cycle in A, then

$$\delta[\gamma] = [\partial(\gamma)].$$

Let $f:(X,A)\to (Y,B)$ be a map of pairs. It naturally induces a commutative diagram

$$0 \longrightarrow S_{\bullet}(A) \longrightarrow S_{\bullet}(X) \longrightarrow S_{\bullet}(X, A) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow S_{\bullet}(B) \longrightarrow S_{\bullet}(Y) \longrightarrow S_{\bullet}(Y, B) \longrightarrow 0$$

which further induces compatible maps on various homology groups

$$\cdots \longrightarrow \operatorname{H}_{n}(A) \longrightarrow \operatorname{H}_{n}(X) \longrightarrow \operatorname{H}_{n}(X,A) \xrightarrow{\delta} \operatorname{H}_{n-1}(A) \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\cdots \longrightarrow \operatorname{H}_{n}(B) \longrightarrow \operatorname{H}_{n}(Y) \longrightarrow \operatorname{H}_{n}(Y,B) \xrightarrow{\delta} \operatorname{H}_{n-1}(B) \longrightarrow \cdots$$

This construction can be generalized to the triple $B \subset A \subset X$.

Theorem

If $B \subset A \subset X$ are subspaces, then there is a long exact sequence

$$\cdots \to \operatorname{H}_n(A,B) \to \operatorname{H}_n(X,B) \to \operatorname{H}_n(X,A) \overset{\delta}{\to} \operatorname{H}_{n-1}(A,B) \to \cdots.$$

Proof.

This follows from the long exact sequence associated to

$$0 \to \frac{S_{\bullet}(A)}{S_{\bullet}(B)} \to \frac{S_{\bullet}(X)}{S_{\bullet}(B)} \to \frac{S_{\bullet}(X)}{S_{\bullet}(A)} \to 0.$$

Theorem (Homotopy Axiom for Pairs)

If $f, g: (X, A) \rightarrow (Y, B)$ and f is homotopic to g rel A. Then

$$\mathrm{H}_n(f)=\mathrm{H}_n(g):\mathrm{H}_n(X,A)\to\mathrm{H}_n(Y,B).$$

Reduced Homology

Proposition

Let $\{X_{\alpha}\}$ be path connected components of X, then

$$\mathrm{H}_n(X) = \bigoplus_{\alpha} \mathrm{H}_n(X_{\alpha}).$$

Proof.

This is because

$$S_{\bullet}(X) = \bigoplus_{\alpha} S_{\bullet}(X_{\alpha}).$$

Proposition

Let X be path connected. Then $H_0(X) \simeq \mathbb{Z}$.

Proof.

 $\mathrm{H}_0(\emph{X}) = \emph{S}_0(\emph{X})/\partial \emph{S}_1(\emph{X}).$ Let us define the map

$$\epsilon: S_0(X) \to \mathbb{Z}, \quad \sum_{p \in X} m_p p \to \sum_p m_p.$$

 ϵ is zero on $\partial S_1(X)$.

On the other hand, assume $\epsilon(\sum_{p\in X} m_p p) = 0$, then we can write

$$\sum_{p\in X} m_p p = \sum_i (p_i - q_i)$$

into pairs. Since X is path connected, we can find a path $\gamma_i:I\to X$ such that $\partial\gamma=p_i-q_i$. Therefore $\sum_{p\in X}m_pp=\sum_i\partial\gamma_i\in\partial S_1(X)$. It follows that ϵ induces an isomorphism $\epsilon:H_0(X)\simeq\mathbb{Z}$.

In general, we have a surjective map

$$\epsilon: \mathrm{H}_0(X) \to \mathbb{Z}, \quad \sum_{p \in X} m_p p \to \sum_p m_p.$$

Definition

We define the reduced homology group of X by

$$\tilde{H}_n(X) = \begin{cases} H_n(X) & n > 0 \\ \ker(H_0(X) \to \mathbb{Z}) & n = 0 \end{cases}$$

We can think about the reduced homology group as the homology group of the chain complex

$$\cdots \to S_2(X) \to S_1(X) \to S_0(X) \to \mathbb{Z}.$$

The long exact sequence still holds for the reduced case

$$\cdots \to \widetilde{\mathrm{H}}_n(A) \to \widetilde{\mathrm{H}}_n(X) \to \mathrm{H}_n(X,A) \stackrel{\delta}{\to} \widetilde{\mathrm{H}}_{n-1}(A) \to \cdots$$

Example

If X is contractible, then $\tilde{H}_n(X) = 0$ for all n.

Example

Let $x_0 \in X$ be a point. Using the long exact sequence for $\mathcal{A} = \{x_0\} \subset X$, we find

$$\mathrm{H}_n(X, x_0) = \mathrm{\tilde{H}}_n(X).$$